1.除法的基本知识是什么
出发的基本知识包括:
除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算叫除法。(除法是乘法的逆运算)
掌握试商方法和用竖式计算除法。
除法分为:平均除和包含除。
除法商不变性质:被除数和除数同时乘以或除以同一个数(0除外),商不变。
连除性质:一个数连续除以几个数,等于一个数除以这几个数的积。
理解分数与除法的关系:分子相当于被除数,分数线相当于除号,分母相当于除数。
理解比和除法的关系:比的前项相当于被除数,比好相当于除号,后项相当于除数。
2.想搜集和除法相关知识
除号属于四则运算的符号,四则运算中的加减号是从15世纪才开始使用,十七世纪出现乘号和除号。
除号“÷”被称为雷恩记号,因为它是瑞典人雷恩(Juhann liuinrich Rahn, 1622-1676)在1659年出版的一本代数书中首先使用的。1668年,这本书译成英文出版,这个记号得以流行起来,直到现在。他用一道横线把两个圆点分开,表示分解的意思,即上方和下方的「?」,分别代表分子分母。
但德国知名科学家莱布尼兹,主张以「:」替代「÷」的符号。1666年,莱布尼兹在他的一篇论文《组合的艺术》中首次用“:”作为除号,德国和前苏联等国家使用。
3.五年级小数乘除法知识总结,
1、乘法(1) 整数乘以小数及小数乘以小数:先用整数乘法法则算出积,再看因数中有几位小数,将得出的积从右往左数几位,点上小数点。
注意:积末尾有零的,先点小数点再消去。2、除法:(1)除数是整数的小数除法:先用整数除法的法则算出商,然后在商上点上小数点(商的小数点要和被除数的小数点对齐)。
(2)除数是小数的除法:先移动除数的小数点,使除数变成整数,除数的小数点向右移动几位,被除数的小数点也要向右移动几位(位数不够的在被除数后面用0补足),然后按照除数是整数的小数除法进行计算。
4.如何将整个小学阶段与整数除法相关的知识进行梳理,总结,形成知识网
本研究源起于实践需要。虽然国内学者关注整数除法,但一直没有形成小学整数除法专著。此次研究历时半年,以访谈法和文献资料法为主要研究方法,除了是对小学整数除法教学。
出版源
《华中师范大学》, 2014
关键词
小学数学 / 整数除法 / 教学问题 / 教学策略
被引量
0
全部来源求助全文
知网
相似文献
小学数学整数除法教学中模型使用的实践与思考
梁晶 - 《数学学习与研究》 - 2014 - 被引量: 0
基于小学数学除法的探究式教学研究
万懿 - 《学周刊》 - 2015 - 被引量: 0
要把分数和整数乘除法应用题统一起来
唐松山 - 《小学教学研究》 - 1986 - 被引量: 0
小学数学“有余数除法”教学方法研究
辜运兰 - 《课程教育研究:新教师教学》 - 2014 - 被引量: 0
小学“余数除法计算”教学策略研究
陈康莲 - 《教师》 - 2015 - 被引量: 0
“商末尾有0的两位数除法”教学设计
吴华 - 《小学教学研究》 - 1997 - 被引量: 0
小学数学乘除法教学方法探讨
董红平 - 《考试周刊》 - 2016 - 被引量: 0
浅析小学数学“有余数除法”教学策略
陈传梅 - 《数学学习与研究》 - 2014 - 被引量: 0
“小数除法整理和复习”教学设计与评析
张凌宇,孙晶 - 《黑龙江教育:小学教学案例与研究》 - 2014 - 被引量: 0
加载更多
相似文献
返回顶部
相关热搜词
616 次检索1 整数除法
1333 次检索2 被除数
876 次检索3 小数除法
1394 次检索4 余数
1630 次检索5 计算法则
4185 次检索6 平均分
7591 次检索7 自然数
711 次检索8 不变性质
7067 次检索9 设计意图
1216 次检索10 整数部分
?0
文献可以批量导出啦~
欢迎点我试用!
?批量引用(0)
清空列表
导出至
一键收藏一键复制
引用格式
帮助举报给百度提建议
5.学习除法的基础都有什么
呃、除法就是平均分的问题、除法是四则运算之一。已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。若ab=c(b≠0),用积数c和因数b来求另一个因数a的运算就是 除法
除法,写作c/b,读作c除以b(或b除c)。其中,c叫做被除数,b叫做除数,运算的结果a叫做商。如在10/5中,被除数为10,除数为5,商为2。在非代数式的书写中,也可以将a/b简单写作a ÷b。大部分的非英语语言中,c/b还可写成c : b。英语中冒号的用法请参照比例。除法法则:除数是几位,先看被除数的前几位,前几位不够除,多看一位,除到哪位,商就写在哪位上面,不够商一,0占位。余数要比除数小,如果商是小数,商的小数点要和被除数的小数点对齐;如果除数是小数,要化成除数是整数的除法再计算。商不变性质: 被除数和除数同时乘或除以一个非零自然数,商不变。
《分数的基本性质》说课稿
·《分数单位》 教学设计
《分数单位》 教学设计 教学目标 1 .使学生理解分数单位。 2 .引导学生学会抽象概括。 3 .培养学生初步的逻辑思维能力。 重点难点 教具准备(小圆片) 教学过程 (一)导入 1 .用分数表示下面各图中的阴影部分。 2 . 下列分数表示图中的阴影部分对不对? 3 . 说一说。 ( l ...·《分数单位的意义》 教学设计
《分数单位的意义》 教学设计 教学目标 (1)进一步理解分数、分子、分母、分数单位的意义,理解分数与除法的关系,理解和掌握分数的基本性质。 (2)能正确地约分和通分,能正确地比较分数的大小,能正确地进行分数和小数的互化。 (3)能正确地解答 求一个数是另一个数的...·《分数单位》 教学设计
《分数单位》 教学设计 教学目标 通过练习,使学生进一步认识的意义和分数单位。同时培养学生的口头表达能力。 教学重点、难点 重点、难点:理解分数单位的含义,并能运用这些知识解决一些实际问题 教具、学具准备 教 学过程 备 注 一、明确本节课的学习内容和要求。.....·分数单位 教学设计
分数单位 教学设计 一教学内容 分数单位 教材第62页的内容。 二教学目标 1.使学生理解分数单位。 2.引导学生学会抽象概括。 3.培养学生初步的逻辑思维能力。 三重点难点 理解分数单位。 四教具准备(小圆片) 五教学过程 (一)导入 1.用分数表示下面各图中的阴影部分。
求一个数是另一个数的几分之几的教学设计
作为一名教师,很有必要精心设计一份说课稿,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。那么应当如何写说课稿呢?以下是我精心整理的《分数的基本性质》说课稿,欢迎阅读,希望大家能够喜欢。
《分数的基本性质》说课稿1一、说教学理念
1、以学生发展为本,着力强化个人主体意识,同时关注学生学习动机、兴趣等情感态度。
2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会和充分的练习空间。
3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化,以及“用数学学数学”等数学思想方法。
二、说教材
1、教学内容
《分数的基本性质》一课是五年级下册第四单元的一个内容。这部分内容是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据。因此,分数的基本性质是本单元的教学重点之一。在讲解这一知识点时,应注意加强整数商不变性质的回顾,这样既帮助学生理解了分数的基本性质,又沟通了新旧知识的内在联系。
2、学情分析
学生在三年级上学期已经初步认识了分数,知道分数各个部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。另外,本单元的知识内容概念较多,比较抽象,学生的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。在数学教学中,化抽象为具体、直观,对于顺利开展教学是十分必要的。
3、教学目标:
(1)通过教学使学生理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。
(2)引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括能力。
(3)渗透初步的辨证唯物主义思想教育,使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。
教学重点:理解和掌握分数的基本性质;教学难点:学习自主探索,发现和归纳分数基本性质,以及应用它解决相应的问题。教具学具:课件,三张同样大小的长方形纸条、彩笔。
三、说教法
“将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,我采用的教学方法主要有:
1、实际操作法
指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
2、直观演示法
先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。
3、启发式教学法
运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在积极的思维中获取新知。
四、说学法
1、学生在学习分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在纸条上涂出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,在尝试中发现,在实践中体验,从而加深学生对分数基本性质的理解。
2、在学习例题的过程中教师先采用启发法,再采用学生自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成练习题,达到检验自学的目的。
五、说教学过程
(一)、新知铺垫
(二)、新知导入
(三)、新知探究
(四)、新知探究
(五)、新知训练
(六)、新知应用
(七)、新知强化
(八)、新知小结
1、新知铺垫和导入
上课伊始我利用分饼的故事来激发学生的学习兴趣,让学生亲自动手折一折、分一分、比一比,从直观上让学生感受到这几个分数大小是相等的,而这几个分数的分子和分母都不相等,这其中有什么规律呢?继而揭示课题。
(设计意图)好奇是学生的天性,通过分地故事能快抓住学生的好奇心,使他们在心理上产生悬念,带着疑问迅速切入正题。
2、新知探究
(1)、动手操作、形象感知
首先让学生用三张同样大小的长方形纸条折一折,再涂色表示出每张纸的1/2,2/4,4/8。观察涂色部分,说说发现了什么?在学生汇报时,说出:涂色部分面积相等,也就说明这三个分数大小相等。然后通过电脑再进一步证实学生的发现:通过观察,我们发现三个阴影部分大小相等,说明三个分数大小相等。
(设计意图)主要是利用学生爱动手以及直观思维的特点,让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好迁移,而且激活了课堂气氛,营造了良好的学习开端。
(2)、观察比较,探究规律
首先,在学生折纸的基础上,通过小组讨论交流总结出分数的基本性质,让学生理解“同时乘上或者除以”的意义,以及为什么要强调“0除外”这个条件。其次,总结出分数的基本性质后,要和以前学过的商不变规律进行对比,找出二者间的联系,使学生更好的理解、运用性质。
(设计意图)这一环节重在培养了学生大胆交流、语言表达的能力,同时学生在汇报交流中使问题逐渐明朗化,最终验证了自己的猜想。要充分放手,让学生畅所欲言。
3、新知训练
在巩固阶段,我安排了三个不同层次的习题。其中“新知训练”是对“分数的基本性质”做进一步的诠释。“新知应用”是导入分饼时的题,难度不大,首尾照应,最后还安排了“新知强化”环节,属于开放性题。整个习题设计部分,题目呈现方式的多样,吸引了学生的注意力,激发了学生兴趣,培养了学生创新意识和解决问题的能力。
《分数的基本性质》说课稿2一、说教材
《分数的基本性质》是在分数教学中占有重要的地位,在小学数学学习中起着承前启后的作用。它既以分数的意义、分数的大小比较为基础,又与整数除法及商不变的性质有着内在的联系,更是分数的约分、通分的依据,也是进一步学习分数加减法计算、比的基本性质的基础。因此,分数的基本性质是该单元的教学重点之一。
二、说学情
学生在三年级上学期已经初步认识了分数,以及同分母分数的大小。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。五年级学生已经养成了合作学习的习惯,并且已经具有了一定的分析和解决问题的能力,再加上他们所具有的一定的生活经验,因此能够在教师的引导下完成“质疑——探索——释疑——应用”这一完整的学习过程。
三、说教学目标
依据新的《数学课程标准》,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求。根据本节课的具体内容并结合学生的实际情况,我制定了以下教学目标:
知识与技能:让学生亲身经历“分数基本性质”抽象概括的过程,理解和掌握分数的基本性质,并能初步运用分数的基本性质解决简单的数学问题。
过程与方法:让学生经历发现问题、探究问题、解决问题的全过程,在观察、猜想、验证等探索活动中,培养学生观察--探索--抽象--概括的能力以及合情推理能力,体验解决问题策略的多样性。
情感与态度:使学生在分数基本性质的探究活动中,获得成功的体验,建立自信心,感受到数学的严谨性,及渗透事物是相互联系、发展变化的辩证唯物主义观点。
教学重点:理解和掌握分数的基本性质,运用分数的基本性质解决实际问题。
教学难点:让学生经历自主探索,发现和归纳分数的基本性质,并会应用分数的基本性质解决相关问题。
教学准备:三张同样大小的长方形纸张,彩色笔
四、说教学方法
树立以“以学生发展为本”、“以学定教”的思想,为实现教学目标,有效地突出重点、突破难点,我遵循学生的认知规律,以建构主义学习理论为指导,在探究分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。创设了一种“情境导入、动手体验、自主探索”的课堂教学形式,以“自主探究”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证——质疑讨论、完善猜想等,把这一系列探究过程放大,把“过程性目标”凸显出来。
五、学法
有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,自主探究法,合作交流的学习方式,让学生通过独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。
六、说教学过程
为了全面、准确地引导学生探索发现分数的基本性质,实现教学目标,我努力抓住学生的思维生长点组织教学,设计了以下五步教学环节:
1、创境设疑: 回顾旧知,引发思考
2、自主探究: 动手实践,发现规律
3、交流归纳:揭示规律,巩固深化
4、分层精练:多层练习,多元评价
5、感悟延伸:课堂小结,加深理解
第一环节:创境设疑
结合六一儿童节的到来,创设分蛋糕的情景,妈妈分得公平吗?课始便迅速地抓住了学生的好奇心,使课堂教学有了一个好的开始。鼓励学生当小法官,则极大地调动了学生的积极性,使他们在心理上产生悬念,进一步激发学生的学习兴趣,为后面的学习做好了铺垫。这样设计也是从学生已有的经验和情感出发,找准新知的最佳切入点,为学生后面的联想和猜想巧设“孕伏”。
第二环节:自主探究
通过折纸、涂色的动手操作活动,使学生亲身经历并获得非常具体、真切的感知,为探究分子、分母的变化规律提供认知基础。教师通过五个有层次的问题,分层质疑,分层提问,分层评价,尽量地关注到了每一个层次的学生,引导学生逐步在自主探索、合作互助的学习方式中初步理解并能简单概括出分数的基本性质,并及时强调了0除外的意义,使学生体验到解决问题策略的多样性,发展学生的实践能力和创新精神,培养学生的合作意识。
第三环节:交流归纳
在这一环节,教师引导学生在观察与分析、探索与思考分数的基本性质的基础上不断生成新问题,通过质疑,借助知识的迁移,沟通分数的基本性质与商不变性质之间的联系。引导学生应用分数和除法的关系,以及整数除法中商不变的性质,说明分数的基本性质。这样的设计就让学生感受到了数学知识的内在联系,同时渗透“事物之间是相互联系”的辨证唯物主义观点,培养学生观察--探索--抽象--概括的能力。
第四环节:分层精练
这个环节让学生对分数的基本性质再一次的体验,感受,研究,同时也是整节课的亮点之一,练习分层,评价分层,通过分层练习,关注到每一个层次的学生,让每一个学生都有发展。教师结合本班学生的学习特点,设计了由浅入深,由易到难的练习,基本练习让90%的同学体验到了学习的快乐,综合练习让80%的同学品尝到了成功的喜悦,拓展练习则留到课后,让学生在自主探究中、讨论交流中、知识的沉淀中进一步加深对知识的理解和掌握。
第五环节:感悟延伸
通过小结、反思,查漏补缺,学生在交流收获、互相帮助的过程中,使学生对知识有个系统的回顾和认识,从而进一步培养学生的知识概括能力。
总之,本节课教学是坚持了“学生是探索的主体”这一教学原则,面向全体学生,充分的引导学生动手实验,自主探索,质疑延伸,合作交流,让每一个学生在探索的过程中感受数学和日常生活的紧密联系,体验学习数学的快乐,培养了创新精神和实践能力。
《分数的基本性质》说课稿3一、说教材分析
《分数的基本性质》是义务教育课程标准实验教材人教版五年级下册第五单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系、整数除法中商不变的规律这些知识为基础的。分数的基本性质是建立在分数大小相等这一概念基础之上的。而两个分数的大小相等,并不意味着两个分数的分子、分母分别相同。分数的基本性质又是约分和通分的基础,而约分和通分则是分数四则混合运算的重要基础,因此,理解分数的基本性质显得尤为重要。
二、说教学目标
根据教材分析制定如下的教学目标:
知识与技能:
1、使让学生理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。
2、培养学生观察、分析和抽象概括能力。
过程与方法:
1、让学生经历分数基本性质的探究过程。
2、通过引导启发,帮助学生学会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数的方法。
情感态度与价值观:
1、体验合作探究的乐趣,培养学生的团结协作精神。
2、渗透“事物间相互联系”的辩证唯物主义观点。
教学重点:理解分数基本性质。
教学难点:归纳分数的基本性质,并运用性质转化分数。
教具教学准备:
多媒体课件,小棒、纸条、圆形纸片
三、说教学策略
为了营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着“将课堂还给学生,让课堂焕发生命活力”的指导思想,根据学生的认知规律,我采取以下教学策略:
1、采用了创设情境、引导探究、引导自学、组织讨论、组织练习等教学策略。
2、实际操作:指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促进学生的感性认识逐步理性化。
3、引导概括:先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。
4、新课标指出:有效的数学学习活动,不能单纯模仿与记忆。动手实践、自主探索与合作交流是本节课学生学习的重要方式。
四、说教学流程
结合五年级学生的理解能力和年龄特征,我将本课的教学设计为六个环节。
(一)、创设情境,引发猜想
首先我为学生带来一个《猴王分饼》的故事。
猴山上的小猴子最喜欢吃猴王做的饼了,有一天,猴王做了三块大小一样的饼分给小猴子吃。它先把第一块饼平均切成4块,分给猴1一块;猴2见了说:“太少了,我要2块。”猴王又把第二块饼平均切成8块,分给猴2两块;猴3更贪,它抢着说:“我要3块,我要3块……”猴王又把第三块饼平均切成12块,分给猴3两。小朋友,你知道哪只猴子分得的饼多吗?
“同学们,你们认为猴王分得公平吗?”引发学生的猜想。
(这样就激发了学生的学习兴趣,为后面的'学习做好了铺垫。)
(二)自主探索,寻找规律
(下面这个环节是课堂教学的中心环节,新课标强调,要让学生在实践活动中进行探索性的学习。根据这一理念,我设计了下面的活动。让学生在体验中学习,在学习中体验。)
1、小组合作 验证猜想
这只是大家的猜想,究竟哪只猴子分得的饼多呢?亲自分一分,验证你们的猜想。
学生操作验证---集体汇报交流----展示成果
2、既然三只小猴分得的饼同样多,那么表示他们分得饼的三个分数是什么关系呢?这三个分数什么变了,什么没变?
学生得出:这三个分数是相等关系,分数的分子和分母变化了,但分数的大小不变。
3、猴王把三张大小一样的饼分给小猴一部分后,剩下的部分大小相等吗?通过观察演示得出3/4=6/8=9/12
4、我们班有64名同学,分成了四组,每组16人。那么,第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出1/2=2/4=32/64
(三)比较归纳 揭示规律
1、出示思考题
1/4=2/8=3/12
比较每组分数的分子和分母:
从左往右看,是按照什么规律变化的?
从右往左看,又是按照什么规律变化的?
通过观察,你发现了什么?
让学生带着上面的思考题,先独立思考,后小组讨论、交流。
2、集体交流,归纳性质。
3、师生共同总结规律,找出性质中的关键词,然后齐读,注意关键的字词要重读。
4、现在,大家知道猴王是运用什么性质分饼了吗?
5、沟通分数的基本性质与商不变性质之间的联系。引导学生应用分数和除法的关系,以及整数除法中商不变的性质,说明分数的基本性质。
(这样的设计就让学生感受到了数学知识的内在联系,同时渗透“事物之间是相互联系”的辨证唯物主义观点)
(四)自学例2
1、自学例2。
2/3 = 2×()/3×4 =()/12
10/24 = 10 ( )/24 ( ) = ( )/12
2、展示交流:重点让学生说说分母、分子是如何变化的?根据什么?
这样设计的目的是学生学会的老师不包办,从而培养了学生的自学能力。
(五)多层练习 巩固深化
1、填上合适的数,说说你填写的根据
1/3 =()/6 10/15 =()/3 1/4 = 5/()
我想通过这道题让学生进一步加深对分数基本性质的形成过程的理解,从而培养学生的语言表达能力。
2、说一说下面各式运用分数的基本性质是否正确
5/24=5×2/24÷2=10/12 ( )
4/9=4÷2/9÷3=2/3 ( )
13/18=13+2/18+2=15/20 ( )
在这我设计了同学们在平时做题中容易混淆的问题,提醒同学们今后要注意。
3、想一想:(选择你喜欢的一道题来做)
与1/2相等的分数有多少个?想像一下把手中的正方形的纸无限地平分下去,可得到多少个与1/2相等的分数?
9/24和20/32哪一个数大一些,你能讲出判断的依据吗?
在这我让同学们充分发挥想象,灵活运用分数的基本性质。为后面学习约分和通分的知识奠定基础。
(六)本课小结
同学们,通过这节课,你有哪些收获?
学生在交流收获的过程中,培养学生的知识概括能力。
五、说教学评价
1、教学过程中采用自我、小组、集体等多种评价方式,激发起学生交流的兴趣。
2、多媒体课件的应用,创设生动的教学情境。
3、学生在发现、体验、合作、交流、归纳、总结中,自主参与整个学习过程,营造独立、自主的学习空间,学生成为课堂的主人。
《分数的基本性质》说课稿4我说课的内容是:人教版小学数学课标教材五年级下册75页—76页《分数基本性质》。下面我就从教材分析、学情分析、教学目标、教法学法及教学过程五个方面来谈一下教学过程设计及设计意图。
一、教材分析
本节的内容属于概念教学。《分数基本性质》在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础,还是约分、通分的依据。
二、学情分析
学生已经清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本节课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子、分母变了,分数的大小却没变。学生在这种“变”与“不变”中发现规律,掌握新知识。
三、教学目标
综合分析课程标准要求及学生实际,我确定本节教学目标如下:
1.理解和掌握分数的基本性质,并会运用分数的基本性质把不同的分数化成分母(或分子)相同而大小不变的分数。
2.初步养成观察、比较、抽象概括的逻辑思维能力,并且在自主探究中正确认识和理解变与不变的辩证关系。
3.受到数学思想的熏陶,养成乐于探究的学习态度。
教学重点:理解掌握分数的基本性质,它是约分、通分的依据。
教学难点:让学生自主探索、发现和归纳分数的基本性质,以及应用它解决相关的问题。
四、教法学法
根据本节课的教学目标,考虑到学生已有的知识、生活经验和认知特点,结合了教材内容,本一课我主要采用猜想验证与探索发现的教学模式。在分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析。通过了观察、比较,提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用,激发学生学习兴趣,同时让学生获得成功体验。
五、教学过程
本一节课的教学过程我分五个部分进行
第一部分:故事设疑,揭示课题。以唐僧师徒分饼的故事创设问
题情境,揭示本节课要研究的问题。
第二部分:组织讨论,动手操作。主要是组织学生动手进行折、画、标等活动,初步理解分数基本性质。
第三部分:合作探究,发现规律。主要的是学生找出规律,并利用规律解决问题。
第四部分:多层练习,巩固深化。主要是巩固所学知识并进行拓展提高。
第五部分:梳理知识,反思小结。主要是总结全课。
其中,第三部分“合作探究,发现规律”可以细化成为三个环节:
环节一:动手操作,进行比较
这一环节是在第二部分的基础上进行的,我给每组学生三张大小一样的长条纸,让学生用分数表示涂色部分,并比较大小。此环节的设计主要是培养学生的比较能力。
环节二:呈现问题,引导观察
这一环节主要是呈现给学生这样的一个问题,“第一环节中的分数的分子、分母都不一样,为什么大小相等”,引导学生从左到右、从右到左两方面去观察,此环节的设计主要是培养学生的观察能力。
环节三:交流汇报,得出规律
这一环节主要是学生汇报交流,得出结论。
如果学生没有概括出“0除外”就设计两组练习,分子、分母同乘或除以0,完善结论;如果概括出来了,再追加一个问题“为什么强调0除外”,巩固结论。最终推导出分数的基本性质----分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。此环节的设计主要是培养学生的抽象概括能力。
应该强调的是,无论学生说的多么好,教师最后的总结和确认是不可缺少的。
以上是我对《分数基本性质》一节的教学设计意图,有不当之处,请各位批评指导。
教学过程
一、 用不同方法比较两个数量,引入新课
出示教材第42页第8题的统计图。(改多云天数为3天,雨天天数为8天)
要求:从图中任意选择两个数量进行比较,并用一个数表示比较的结果。
引导学生根据图中的数据特点,分别用“差数”或“倍数”表示两个数量比较的结果。
指出:对两个数量进行比较时,除了可以比较这两个数量相差多少,以及其中一个数量是另一个数量的几倍,还可以用分数表示比较的结果。本节课我们就来学习这样的比较方法。
板书课题:求一个数是另一个数的几分之几。
[说明:“求一个数是另一个数的几分之几”本质上是用分数表示两个数量倍比的结果,它既是“求一个数是另一个数的几倍”这一数学问题的自然拓展,又与“求一个数比另一个数多(少)几”的数学问题有着一定关联。因此,先让学生运用已有的数学知识和方法对相关的两个数量进行比较,再由此引导学生探索“求一个数是另一个数的几分之几”的基本方法,符合数学知识发展的逻辑,有利于学生建立合理的认知结构。]
二、 教学例4,初步学会用真分数表示两个数量比较的结果
1. 出示下图。
提出要求:从图中你能知道什么?根据图意,可以提出哪些数学问题?
结合学生的交流,提出问题:黄彩带的长是红彩带的几分之几?
2. 启发:要求黄彩带的长是红彩带的几分之几,应该把哪种彩带的长看作单位“1”?图中把红彩带平均分成几份?黄彩带的长相当于这样的几份?
3. 要求学生根据上述讨论完成教材中的填空,并小结:要求一个数是另一个数的几分之几,先要确定把哪个数看作单位“1”,在此基础上,可联系分数的意义进行思考。
4. 追问:你能把上面的示意图改一改,使黄彩带的长正好是红彩带的1/5吗?如果要使黄彩带的长是红彩带的1/10,上面的示意图又可怎样改动?
5. 指导完成例4后面的“试一试”。
(1) 先让学生独立完成填空,再引导讨论:
要求蓝彩带的长是红彩带的几分之几,应该把哪根彩带的长看作单位1?
从图上看,红彩带的长被平均分成了几份?蓝彩带的长相当于这样的几份?
(2) 追问:你能把这道题的示意图也改一改,使蓝彩带的长正好是红彩带的3/5吗?如果要使蓝彩带的长是红彩带的3/10,这道题的示意图又可怎样改动?
[说明:教材在教学分数与除法的关系之前,安排“求一个数是另一个数的几分之几”的教学,主要目的是让学生在解决上述问题的过程中进一步加深对分数意义的理解,同时,也为接下来学习分数与除法的关系积累感性认识。上述教学过程,注意强调“要求一个数是另一个数的几分之几,先要确定作为单位‘1’的数量”,而这样的思考方法既有利于学生联系分数的意义理解相关问题的数学本质,也有利于学生初步体会到“求一个数是另一个数的几分之几”与“求一个数是另一个数的几倍”的内在一致性,因为“求一个数是另一个数的几倍”时,同样也要先确定作为比较标准的那个数量。这就为学生体会分数与除法的关系提供了一个有效的切入点。此外,让学生根据指定的比较结果(分数),调整表示相关数量的示意图,也有利于学生积极主动地展开思考,在此过程中更为透彻地把握基本思考方法。]
三、 教学例5,初步学会用假分数表示两个数量比较的结果
1. 出示例题:已知绿彩带的长是红彩带(如下图)的5/4,你能画出表示绿彩带长度的示意图吗?
2. 讨论:根据题意,你认为是红彩带长一些,还是绿彩带长一些?说说你的想法。
组织讨论后,要求学生各自画出表示绿彩带长度的示意图。
3. 引导反思:解决这个问题时,应该把哪个数量看作单位“1”?红彩带的长被平均分成了几份?绿彩带的长相当于这样的几份?
4. 拓展:如果画出的绿彩带是这样的7份,那么绿彩带的长是红彩带的几分之几?如果画出的绿彩带是这样的8份,那么绿彩带的长又是红彩带的几分之几?这样的比较结果还可以怎样表达?
学生讨论后,明确:绿彩带的长是红彩带的8/4,也可以说成是绿彩带的长是红彩带的2倍。
5. 指导完成例5后面的“试一试”。
(1) 先让学生独立完成填空,再引导讨论:
都是对两根彩带的长进行比较,为什么两次比较的结果却不相同?
(2) 启发:求花彩带的长是红彩带的几分之几,需要把哪根彩带的长看作单位“1”?求红彩带的长是花彩带的几分之几,又需要把哪根彩带的长看作单位“1”?
(3) 强调:“求一个数是另一个数的几分之几”时,关键要弄清应把哪个数确定为单位“1”,单位“1”不同,比较的结果也就不同。
[说明:用假分数表示两个数量比较的结果,不仅有利于学生深化对“求一个数是另一个数的几分之几”的基本思考方法的理解,而且能使学生进一步领会假分数的实际意义及其应用价值。先让学生画图表示一个数量的几分之几,再让学生从中体会用假分数表示两个数量比较结果的基本思考方法,这样能充分激活学生已有的知识经验,有利于学生从整体上把握相关数量关系的数学实质。通过改变绿彩带所占的份数,并让学生用不同的假分数或整数继续表示两个数量比较的结果,既体现了数学问题的趣味性与灵活性,又突出了相关数学知识和方法的内在关联和发展线索,有利于学生把新的数学内容主动纳入原有的认知结构之中。至于“试一试”中的问题,则有利于学生在比较中进一步明确方法,提高分析和理解问题的能力。]
四、 运用方法,解决简单实际问题
1. 指导完成“练一练”第1、2题。
先让学生各自完成填空,再通过交流并明确:解答这里的每一个问题时,分别要把哪个数量看作单位“1”?单位“1”的量被平均分成了多少份?另一个数量相当于单位“1”的几分之几?
2. 出示课始的条形统计图,要求学生从图中任意选择两个数量进行比较,并用分数表示比较的结果。
适当提示:多云的天数是阴天的3/9,也可以说成多云的天数是阴天的1/3;阴天的天数是多云天数的3倍,也可以说成阴天的天数是多云天数的9/3或3/1。
3. 口答。
小红有9张画片,小明有13张画片。
(1) 小红画片的张数是小明的几分之几?小明画片的张数是小红的几分之几?
(2) 如果小明送1张画片给小红,这时小红画片的张数是小明的几分之几?小明画片的张数是小红的几分之几?
(3) 如果小明送2张画片给小红,这时可以用怎样的分数表示他俩画片张数的关系?还可以怎样理解这样的关系?
如果学生解答第(2)、(3)题感到困难,可提醒他们先用学具摆一摆,再回答。
4. 课堂作业:练习七第5~7题。
学生完成后,适当组织交流,进一步突出正确确定单位“1”的数量对于解决相关问题的重要性。
五、 全课小结
通过这节课的学习,你又学会了哪些比较两个数量的方法?你认为“求一个数是另一个数的几分之几”的关键是什么?
总说明
本节课试图以两个数量的比较为主线,引导学生充分利用已有的知识和学习经验,由易到难,由浅入深,循序渐进地探索并掌握“求一个数是另一个数的几分之几”的基本思考方法。纵向来看,先让学生学习用“几分之一”表示两个数量比较的结果;再让学生依次学习用“几分之几”(真分数和假分数)表示两个数量比较的结果;最后让学生综合运用上述过程中所获得的认识,自主探索并体会“求甲数是乙数的几分之几”与“求乙数是甲数的几分之几”的联系和区别。这样的过程,凸显了分数意义在分析和解决问题过程中的作用,有利于学生在解决问题的同时,逐步拓展并加深对分数的理解,不断增强数感。横向来看,本节课也十分注意通过一些具体的教学环节,启发学生体会“求一个数是另一个数的几分之几”与“求一个数是另一个数的几倍”这两类问题的内在联系,帮助学生逐步认识到“求一个数是另一个数的几分之几”,本质上就是用分数表示两个数量倍比的结果,从而为学生建立合理的认知结构提供了机会和保障。此外,本节课还注意根据知识发生、发展的进程,适时、适度地提出一些开放性和挑战性的问题,这对于激发学生的探索热情,促进学生不断提升数学思考的水平也有一定的积极意义。
本文来自作者[知白]投稿,不代表鸡脖创新立场,如若转载,请注明出处:https://jcjybjb.com/jb/7721.html
评论列表(4条)
我是鸡脖创新的签约作者“知白”!
希望本篇文章《除法相关的小知识(除法的基本知识是什么)》能对你有所帮助!
本站[鸡脖创新]内容主要涵盖:生活百科,小常识,生活小窍门,知识分享
本文概览:1.除法的基本知识是什么 出发的基本知识包括: 除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算叫除法。(除法是乘法的逆运算) 掌握试商方法和用竖式计算除法。...